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We investigate numerically the dynamical behavior of a polymer chain collapsing in a dilute solution. The
rate of collapse is measured with and without the presence of hydrodynamic interactions. We find that hydro-
dynamic interactions accelerate polymer collapse. We present a scaling theory describing the physical process
responsible for the collapse kinetics. Predicted collapse times in a hydrodynamic ��H�N4/3� and a Brownian
heat bath ��B�N2� agree well with the numerical results ��H�N1.40±0.08 and �B�N1.89±0.09� where N denotes
chain length. The folding kinetics of Go models of proteins is also examined. We show that for these systems,
where many free energy minima compete, hydrodynamics has little effect on the kinetics.
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I. INTRODUCTION

When the temperature is lowered rapidly or the solvent
quality is changed from good to poor, the resulting effective
attractive interactions between monomers can cause a poly-
mer to undergo a collapse transition �coil-globule transition�
from a swollen to a compact state. The equilibrium proper-
ties of the polymer transition from the swollen to the col-
lapsed state are well understood �1,2�. However, the kinetics
of the transition and in particular the effect on that kinetics of
the hydrodynamic properties of the solvent are less clear.

In a previous paper we presented an investigation of the
kinetics of the polymer collapse transition �3�. The collapse
was monitored with and without the presence of hydrody-
namic interactions, therefore allowing a direct investigation
of including backflow. We found that hydrodynamics speeds
up the polymer collapse. Here we extend that work, giving
numerical results for longer chains and evidence for our in-
terpretation that the collapsing polymer sets up a flow which,
in turn, speeds up its collapse. We also present a scaling
theory describing the physical picture responsible for the col-
lapse kinetics. We explore the effect of excluded volume on
the collapse. We then consider simple models of protein fold-
ing and show that for these hydrodynamics has little effect
on the folding kinetics.

Understanding the kinetics of the polymer collapse tran-
sition is a challenging task. Experimentally it is difficult be-
cause accessible concentration and length-time scales are
limited �4–8�. For the available concentrations there is sig-
nificant competition between intrachain collapse and inter-
chain aggregation.

Theoretical work on the dynamics of polymer collapse
can be broadly divided into two approaches. Following de
Gennes �9� several authors have developed phenomenologi-
cal models which balance the driving and dissipative forces
to give scaling laws �10–17�. However, these require as-

sumptions about how the collapsed state develops on which
there is no consensus. Other approaches have been based on
solutions of the Langevin equation �18–22�. Of particular
interest is work by Pitard �18� and by Kuznetsov et al. �19�
who find the inclusion of hydrodynamics, modeled by a
preaveraged Oseen tensor, speeds up the collapse. However,
the values predicted in the literature for the exponents � re-
lating the collapse time to the chain length ��H�N�� vary
widely.

Early simulations on polymer collapse �10,15,23,24�, us-
ing Monte Carlo or Langevin approaches, also led to diverg-
ing interpretations. Moreover, they did not include the hydro-
dynamic effects of the solvent. However, recent work has
shown that it is now possible to use molecular dynamics
simulations with an explicit solvent to model the collapse
transition if powerful computational resources are available
�17,25�. Chang and Yethiraj �25� compared molecular dy-
namics simulations of a polymer in a solvent to Brownian
dynamics simulations for short chains of up to 128 mono-
mers. Abrahams et al. �17� simulated chains of length 512
using a molecular dynamics approach for both polymer and
solvent. Further discussion of these papers is given in Sec.
VII.

Here we use a hybrid numerical approach to investigate
polymer collapse and, in particular, the role of backflow on
the collapse kinetics �26�. The solvent is modeled by a me-
soscale algorithm, stochastic rotation dynamics �27�, and the
polymer by molecular dynamics as summarized in Sec. II. In
Sec. III we present results for the dependence of the collapse
time on the number of monomers for a chain in a Brownian
and in a hydrodynamic solvent. In Sec. IV the exponents are
reproduced using a simple scaling theory motivated by the
simulations. We then explore, in Sec. V, the effect of includ-
ing excluded volume between the monomers and solvent par-
ticles. We show that this change in the algorithm has no
effect on the collapse kinetics. In Sec. VI we turn our atten-
tion to the role of hydrodynamics in the folding kinetics of
proteins in dilute solution. We simulate a protein using a Go
model �28–32� and show that for this system, where many
free energy minima compete, hydrodynamics has little effect
on the kinetics. Finally a conclusion summarizes the paper
and discusses related literature.
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II. MODEL

Modeling a dilute polymer solution is a difficult task be-
cause of the existence of widely differing time scales. The
dynamical properties of polymers can be dominated by hy-
drodynamic interactions between different parts of the poly-
mer chain �1,2,33,34�. In contrast to the time scale of thermal
fluctuations of individual monomers, these interactions are
long ranged and evolve slowly. Therefore it is computation-
ally very expensive to reach hydrodynamic time scales using
molecular dynamics simulations for both the polymer and
solvent.

To overcome these problems we use a hybrid simulation
approach �26� where the equations of motion of the polymer
are solved using a molecular dynamics algorithm. The sol-
vent is modeled using the stochastic rotation dynamics
model �27�. This is a particle-based, mesoscopic model for
simulating fluctuating hydrodynamics. It ignores the molecu-
lar detail of the solvent but preserves its ability to transmit
hydrodynamic forces. The polymer can be thought of as
moving within a “hydrodynamic heat bath.”

The polymer chain is modeled by beads connected via
springs �25,35� with the distance between adjacent beads
along the chain backbone representing an effective Kuhn
length �persistence length�. The finitely extensible springs
are represented by the FENE �finitely extensible nonlinear
elastic� potential

VFENE�r� = −
�

2
R0

2 ln�1 − � r

R0
�2	, r � R0, �1�

where r is the distance between the two monomers and R0
denotes the maximum extension of the spring.

To mimic a good solvent a shifted Lennard-Jones poten-
tial which acts between all the polymer beads is used to
model the excluded volume of the monomers �25,36�:

VLJ
good�r� = 
4����

r
�12

− ��

r
�6	 + � , r � 21/6� ,

0, r � 21/6� .
� �2�

Note that this potential is purely repulsive.
To mimic a poor solvent a Lennard-Jones potential

�25,36� which acts between all the polymer beads is em-
ployed to model both the volume exclusion of the monomers
and a long-range attraction which drives the polymer col-
lapse:

VLJ
poor�r� = 4����

r
�12

− ��

r
�6	 . �3�

Following Kremer and Grest �35�, we take �=1.0, �
=1.0, �=30� /�2, and R0=1.5 � where parameters are
quoted in reduced Lennard-Jones units. The parameter R0
=1.5 � in the FENE potential avoids possible bond crossing
�35�.

Newton’s equations of motion for the polymer are inte-
grated using the time-reversible velocity Verlet algorithm
�36�. The molecular dynamics �MD� time step is chosen to
be 	tMD=0.002 	t where 	t is the interval between solvent
collision steps, defined in Eq. �4�.

The solvent is modeled by a large number N=131 072 of
pointlike particles of mass m which move in continuous
space with a continuous distribution of velocities, but dis-
cretely in time �27,37�. The algorithm proceeds in two steps.
In the first of these, a free-streaming step, the positions of the
solvent particles at time t, ri�t�, are updated simultaneously
according to

ri�t + 	t� = ri�t� + vi�t�	t , �4�

where vi�t� is the velocity of the particle and 	t is the value
of the discretized time step of the solvent which we take to
be unity.

The second part of the algorithm is the collision step
which is executed on both solvent particles and polymer
beads. The system is coarse grained into a cubic grid with
L3 /a3 cells, which have side a=1. In these simulations L
=32 is used. There is no restriction on the total number of
solvent particles in each cell �although the total number of
particles in the system is conserved�. Stochastic multiparticle
collisions are performed within each individual cell by rotat-
ing the velocity of each particle relative to the center-of-mass
velocity vc.m.�t� of all the particles within that cell:

vi�t + 	t� = vc.m.�t� + R„vi�t� − vc.m.�t�… . �5�

R is a rotation matrix which rotates velocities by a fixed
angle 
 �0�
��� around an axis generated randomly for
each cell and at each time step.

The volume in phase space is invariant under both the
free-streaming and collision operations. Therefore the system
is described by a microcanonical distribution at equilibrium
�27�. The initial solvent distribution was generated by assign-
ing positions randomly within the system with an average
number of particles per unit cell, �. The velocities were
taken from a uniform distribution �−vmax�v
�vmax�, 
=x,
y, z, where vmax=�3kBT /m. The distribution relaxed rapidly
�in � 100 time steps� to the equilibrium Maxwell-Boltzmann
form corresponding to the temperature T. Note that the net
momentum in the system must be set to zero �37�.

Ihle and Kroll �38� pointed out that at low temperatures
the transport coefficients of the stochastic rotation dynamics
solvent show anomalies. This is because of the breakdown of
the assumption of molecular chaos as particles undergo con-
secutive collisions within the same cell. Ihle and Kroll
showed that it is possible to greatly improve the behavior of
the algorithm by placing the cubic grid in a random position
at each collision step. This correction has been included in
the algorithm used here.

We note that the collision step preserves the position of
the solvent and polymer beads. It transfers momentum be-
tween the polymer and solvent particles within a given cell
while total momentum and energy are conserved. The ther-
mohydrodynamic equations of motion are captured in the
continuum limit �27�. Hence hydrodynamic interactions can
be propagated by the solvent and, because the polymer beads
are involved in the collisions, to the polymer. Note that it has
been shown that the expected dynamic scaling laws �Zimm
scaling� for, for example, the polymer center-of-mass diffu-
sion coefficient hold for the model �26,39,40�.
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A particularly useful feature of stochastic rotation dynam-
ics is the ease with which hydrodynamic interactions can be
“turned off,” thus replacing the hydrodynamic heat bath by a
Brownian �random� heat bath. This is achieved by randomly
interchanging the velocities of all the solvent particles after
each collision step, thus relaxing the constraint of momen-
tum conservation from a local to a global one. Accordingly
the velocity correlations which result in hydrodynamic inter-
actions disappear from the fluid although the equilibrium
Maxwell-Boltzmann distribution is maintained. Running
simulations with the same initial conditions and parameter
values, but with hydrodynamics present or absent, greatly
facilitates pinpointing the effects of the hydrodynamics �3�.

III. HOMOPOLYMER COLLAPSE IN THE PRESENCE
OF HYDRODYNAMIC INTERACTIONS

Our aim in this section is to study numerically the kinetics
of polymer collapse from a swollen to a compact state �2�.
Focusing on the role of hydrodynamics we show how the
backflow speeds up the collapse kinetics. In the present cal-
culations we take the mean solvent particle number �=4.0,
the mass of the solvent, m=4.0, and monomer, M =16.0, and
the rotation angle 
=90° �3�. The collapse transition is
driven by the attractive Lennard-Jones interactions between
the polymer beads �Eq. �3��. The transition is rounded and
shifted by the finite chain length, and takes place at kBT
�3.5 for chains of length N=100.

Following Chang and Yhethiraj �25�, polymer chains are
equilibrated in good solvent conditions �Eq. �2��, for 10 000
solvent time steps �i.e., 5 000 000 MD time steps�, then sud-
denly quenched into a poor solvent at kBT=0.8. For conve-
nience we set this time to zero. This value ensures collapse
but prevents the chain collapsing so quickly that hydrody-
namic interactions do not have sufficient time to develop.
The rate of polymer collapse was measured by monitoring
the variation of the radius of gyration Rg of the chain with
time:

Rg
2 =

1

N

i=1

N

�Ri − Rc.m.�2, �6�

where Ri is the position of the ith monomer, N is the number
of monomers, and Rc.m. is the position of the center of mass
of the polymer chain:

Rc.m. =
1

N

i=1

N

Ri. �7�

A typical numerical result for the variation of the radius of
gyration with time with and without hydrodynamics is
shown in Fig. 1 for a chain of length N=300. Note that the
final radius of gyration was recorded for both the Brownian
and hydrodynamic collapses and found to be the same as
expected, as the equilibrium polymer properties should be
independent of the nature of the heat bath.

The collapse time � was identified when the radius of
gyration first satisfied

Rg�t� =
1

100
�Rg�0� − �Rg�eq� + �Rg�eq, �8�

where �Rg�eq is the equilibrium radius of gyration in the col-
lapsed state. Results for � are shown for chains of varying
lengths in Table I. � was averaged over 40 statistically inde-
pendent initial configurations for N=40, 60, and 100, 30 for
N=200, and 15 for N=300, and the collapse time for hydro-
dynamic ��H� and Brownian ��B� heat baths compared. Varia-
tions in collapse times between different runs are large as

FIG. 1. Variation of the radius of gyration with time for a col-
lapsing polymer in a hydrodynamic or Brownian heat bath for a
chain of length N=300 at a final temperature kBT=0.8. Axes are
labeled in simulation units.

FIG. 2. A comparison of the pathways for polymer collapse with
and without hydrodynamics for a polymer chain of length N=300 at
a final temperature kBT=0.8.

KINETICS OF THE POLYMER COLLAPSE… PHYSICAL REVIEW E 71, 061804 �2005�

061804-3



expected. However, it is striking that hydrodynamic interac-
tions speed up the rate of collapse for each polymer length.
For N=40, 26 of the 40 runs and for N=60, 34 of the 40 runs
collapsed faster with hydrodynamics switched on. For longer
N all the hydrodynamic runs were faster.

The results in Table I also show that the collapse time
increases with chain length as expected. The exponents are
�H�N1.40±0.08 and �B�N1.89±0.09.

Figure 2 compares typical collapse pathways with and
without hydrodynamics for a chain with N=300, at kBT
=0.8. In these and the majority of other runs little visible
difference was observed in the collapse mechanism. After the
quench the polymer very rapidly forms pearls �blobs� con-
nected by linear segments as observed by other authors �17�.
The pearls then absorb the monomer chains joining them,
resulting in the contraction of the polymer to a collapsed
state.

We expect the increased speed of collapse in a hydrody-
namic solvent to result from solvent-pearl velocity correla-
tions. When a pearl absorbs a monomer energy is liberated
and the pearl receives a net force. This force will be the same
for hydrodynamic and Brownian heat baths. However, in a
hydrodynamic solvent the movement of pearls is enhanced
by the flow of the surrounding fluid.

To investigate the solvent-pearl velocity correlation we
considered a collapsed pearl of Np=60 in equilibrium. The

pearl was dragged by a force fx applied to the monomer i
=Np /2. We measured the equal-time pearl-solvent velocity-
velocity correlation �Vp�t� ·us�t�� and the average velocities
of the pearl �Vp�t�� and of the surrounding solvent �us�t�� in
a hydrodynamic and Brownian solvent.

Figure 3 shows the equal-time pearl-solvent velocity-
velocity correlation in both heat baths. In a Brownian heat
bath the pearl-solvent velocity correlation is zero as ex-
pected. We note, however, that there are velocity correlations
in a hydrodynamic solvent. These correlations make it easier
for the pearl to move and hence speed up the kinetics of
polymer collapse in a hydrodynamic heat bath.

The average velocities of the pearl of radius R and that of
the surrounding solvent within a sphere of radius R3 are
shown in Figs. 4 and 5, respectively. We observed a nonzero
average velocity of the solvent in a hydrodynamic heat bath.
In contrast the Brownian solvent velocity is zero. Since the
movement of the pearl is supported by the hydrodynamic
flow, its average velocity is larger in a hydrodynamic solvent
�Fig. 4�.

IV. SCALING ARGUMENT FOR THE COLLAPSE TIME

We now present a simple scaling argument predicting how
the collapse time of a homopolymer depends on its length

FIG. 3. Pearl-solvent velocity-velocity correlation as a pearl is
dragged through a hydrodynamic and a Brownian heat bath for a
polymer chain of length N=60 at temperature kBT=0.8. Axes are
labeled in simulation units.

FIG. 4. Average velocity of a pearl dragged through a hydrody-
namic and a Brownian heat bath for a polymer chain of length N
=60 at temperature kBT=0.8. Axes are labeled in simulation units.

TABLE I. Averaged collapse time in units of the solvent time
step 	t of a polymer chain of length N with ��H� and without ��B�
hydrodynamics at kBT=0.8. The radius of gyration after collapse in
reduced Lennard-Jones units with ��Rg�eq H� and without ��Rg�eq B�
hydrodynamics is also listed.

N �H �B �Rg�eq H �Rg�eq B

40 116±29 136±33 1.708±0.008 1.708±0.008

60 184±31 252±56 1.937±0.006 1.937±0.006

100 332±56 586±84 2.278±0.004 2.279±0.006

200 829±72 1999±211 2.844±0.003 2.844±0.003

300 1538±107 4421±318 3.246±0.005 3.258±0.010

FIG. 5. Average velocity of the solvent around a moving pearl
dragged through a hydrodynamic and a Brownian heat bath for a
polymer chain of length N=60 at temperature kBT=0.8. Axes are
labeled in simulation units.
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�40�. We compare the behavior of polymers in a Brownian
and a hydrodynamic heat bath.

After the quench the polymer very rapidly forms pearls
connected by linear segments. The pearls then absorb the
remaining monomers, resulting in the contraction of the
polymer to form a collapsed state. The formation of pearls is
relatively fast; for the longest chains studied it took approxi-
mately 5% of the total collapse time and in an explicit
solvent-polymer molecular dynamics simulation �17� less
than 3% for N=512. Therefore the collapse kinetics is domi-
nated by the movement of the pearls �Fig. 2�.

Consider two pearls connected by a string of monomers.
When a pearl absorbs a monomer energy �� is liberated.
Hence pearls receive a net force f from the string. On dimen-
sional grounds,

f �
�

�
, �9�

where � is the diameter of a monomer.
In a Brownian solvent the pearl moves with terminal ve-

locity

Vp
B =

f

Np
, �10�

where  is a friction coefficient and Np is the number of
monomers that make up the pearl.

In a hydrodynamic solvent the average velocity of a
dragged pearl Vp

H in a viscous fluid is

Vp
H =

f

C1�R
, �11�

where � is the solvent shear viscosity and R��Np
1/3 is the

radius of the pearl. The numerical factor C1 depends on the
shape of the dragged object: for a sphere C1=6�. For our
simulations the data in Fig. 6 give C1= �7.61±0.06��. � fol-
lows from the formula given in �37�.

Since pearls absorb the monomers on the string, Np
changes in time according to

dNp

dt
=

Vp

�
. �12�

Solving Eq. �12� using the hydrodynamic �11� and Brownian
�10� velocities and substituting expression �9� for f gives the
growth law for the number of a beads in each pearl:

Np
H � � �

��3�3/4

t3/4, �13�

Np
B � � �

�2
�1/2

t1/2. �14�

When the number of monomers in each pearl is of order the
total number of monomers in the chain we obtain the col-
lapse time �:

�H � ���3

�
�N4/3, �15�

�B � ��2

�
�N2, �16�

which should be compared to the numerical results in Sec.
III, �H�N1.40±0.08 and �B�N1.89±0.09.

We also note that the result for �H obtained here agrees
with that given by Lee and Obukov �41� for a neutral poly-
electrolyte.

V. EFFECT OF EXCLUDED VOLUME

In the algorithm described in Sec. II the monomers are
transparent to the solvent particles. Here we describe an ex-
tension to the algorithm which enforces an excluded volume
between the solvent particles and the monomers which make
up the polymer chain.

We find that the change in algorithm has no effect on the
collapse kinetics. This is as we expected, as the chain behav-
ior depends on having a momentum transfer between poly-
mer and solvent, not on the details of how this transfer takes
place.

In real systems excluded-volume interactions will be im-
portant in the final stages of collapse as solvent molecules
are trapped within the collapsed polymer. However, this is a
regime where details of the molecular interactions are also
very important and where our model is not valid.

Consider two colliding particles 1 and 2 �Fig. 6�. In the
center-of-mass frame the momentum of particles 1 and 2 are
updated by elastic scattering to

P1� = P1 − dp ,

P2� = P2 + dp , �17�

where Pi and Pi� denote the momentum before and after the
elastic collisions, respectively �i=1,2�. From Fig. 6,

FIG. 6. A schematic diagram representing an elastic collision.
Two particles 1 and 2 are colliding elastically in the center-of-mass
frame.
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dp = 2�P1 · r12

r12
� r12

r12
= � 2m1m2

m1 + m2
� 1

r12
2 ��v1 − v2� · r12�r12,

�18�

where mi is the particle mass, vi is the velocity of the particle
i, and r12 denotes the distance between the two particles.
Elastic scattering is executed if the solvent particle overlaps
a monomer after the streaming step:

r12 � �r1 + r2� , �19�

where ri is the radius of particle i, and if the particles are
moving towards each other,

�v1 − v2� · r12 � 0. �20�

We take r1=� /2 for the monomer and r2=0 representing a
pointlike solvent particle.

Simulations are performed as follows: first the monomer
positions and velocities are updated using molecular dynam-
ics. The solvent then streams. If solvent particles and mono-
mers overlap, the elastic scattering collision is executed. The
collision step �5� is then performed on the remaining solvent
particles. The addition of an excluded-volume constraint in-
creases the computational time by a factor of �2.

The kinetics of polymer collapse was monitored with and
without hydrodynamics using this algorithum to impose an
excluded volume. The parameters used were the same as
those given in Sec. III except for a mean particle number �
=10.0.

Since we use a different coupling rule, the value of the
friction acting on the monomer is changed for a given pa-
rameter set. Therefore it was not possible to make a quanti-
tative comparison. However, there was no change in the
qualitative form of the folding pathways and, as before, the
collapse was speeded up by backflow effects.

VI. PROTEIN FOLDING

Given the effect of hydrodynamics on polymer collapse it
is of interest to ask whether similar effects are seen in simple
models of protein folding. The main new feature in proteins
is the existence of a convoluted free energy surface. Model
proteins are easily trapped in local minima, making it diffi-
cult for them to achieve the lowest-energy state �native state�
�42�.

We consider the Go Hamiltonian. This is one of the sim-
plest coarse-grained models of proteins and it has been
widely used to investigate their equilibrium and dynamical
properties �28–32�. The Go Hamiltonian is constructed from
the native state of a protein assuming that native interactions
play an important role in the folding kinetics. It neglects
unknown intramolecular interactions between amino acids.

The target native-state conformation is described by
beads, representing amino acids, connected by springs. The
springs are modeled by

Vs�ri,i+1� = �1�ri,i+1 − d0�2 + �2�ri,i+1 − d0�4, �21�

where d0=3.8 Å, �1=�, and �2=100 �. � denotes the depth
of the Lennard-Jones potential given below.

To model native contact interactions between specific
beads a Lennard-Jones potential is employed:

Vnat�ri,j� = 4����i,j

ri,j
�12

− ��i,j

ri,j
�6	 , �22�

where �i,j =2−1/6di,j . di,j denotes the distances between the
carbon-
 of native contact pairs in the native state which are
taken from the Protein Data Bank �43�. For non-native con-
tact pairs a shifted Lennard-Jones potential is used:

Vnon�ri,j� = 
4����0

ri,j
�12

− ��0

ri,j
�6	 + � , ri,j � dcut,

0, ri,j � dcut,
�
�23�

where �0=2−1/6dcut . dcut= �di,j� is the mean value of all con-
tact pair distances in the native state.

Newton’s equations of motion for the protein were inte-
grated using molecular dynamics. The protein was coupled
to the stochastic rotation dynamics solvent as described in
Sec. II. The mean solvent particle number was �=5.0, the
mass of the solvent, m=1.0, and monomer, M =16.0, the ro-
tation angle 
=� /2, and the system size was L=32.

Statistically independent swollen chain configurations
were placed in a solvent at equilibrium with kBT /�=0.1, and
the folding kinetics was monitored for 100 000 time steps.
We examined a folding 
-helix �N=19�, a �-hairpin �N
=19�, and a protein 2ci2 �N=65�. Native states are shown in
Fig. 7. Here 20 runs were performed for each chain. Figures
8 and 9 show the collapse trajectories of the folding
�-hairpin and the protein 2ci2 in a hydrodynamic heat bath.
For the �-hairpins folding took place through a zipping
mechanism.

The rate of folding kinetics was measured by monitoring
the variation of the radius of gyration, Rg, with time. There
was no obvious difference between hydrodynamic and
Brownian heat baths for any of the proteins considered. The

FIG. 7. Native states for an 
-helix, a �-hairpin, and a protein
2ci2.
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model proteins escape from local trapping minima of the free
energy through thermal noise. This process is not helped by
hydrodynamics. Hydrodynamics tends to support the kinetics
only when beads locally move in the same direction. This is
not generally the case for a protein escaping from a free
energy minimum, as the free energy landscape is so complex.

VII. DISCUSSION

Qualitative features of the collapse pathways for short
chains �N�100� are in agreement with those reported by
Chang and Yethiraj �25� �see their Figs. 6 and 11� who re-
cently compared molecular dynamics simulations of a poly-
mer in a solvent, which included hydrodynamics, to Brown-
ian dynamics simulations, which did not. These authors
found that the Brownian simulations could become trapped
in a metastable free energy minimum. We do not see trapping
at the quench depth we considered in this paper: kBT /�
=0.8. However, if we quench more deeply—for example,
kBT /�=0.1— we do see trapping for both hydrodynamic and
Brownian simulations. Chang and Yethiraj did not see trap-
ping for their molecular dynamics simulations which explic-

itly include hydrodynamics. This discrepancy remains an in-
teresting question. It may be because their chains are shorter
�on real length scales� or because they include explicit
solvent-polymer molecular interactions �which we do not�.

Abrams et al. �17� observed a similar collapse pathway
for a N=512 chain quenched from a � to a poor solvent using
an explicit solvent and polymer molecular dynamics simula-
tion. They analytically modeled early stage kinetics assum-
ing a Gaussian fractal structure for the collapsing chain and
successfully compared the analytical and numerical structure
factor at early times. They also modeled later-stage kinetics
assuming that the fractal structure persists and predicted hy-
drodynamic ��H�N5/6� and Brownian ��B�N3/2� collapse
times at variance with those obtained here. The difference
occurs because they assume a model of pearls connected by
self-avoiding walks rather than linear chains. There is also
interesting related work on the collapse of a polyelectrolyte
�41� and of a constrained polymer �44�.

Kuznetsov et al. �19,45� studied the collapse of a polymer
quenched from a good to poor solvent using a Gaussian self-
consistent method. Their numerical investigation showed
three stages in the kinetics: namely, a rapid initial spinodal
process, a long coarsening stage, and a final compaction-
shape optimization stage. They found that the second stage
dominates the collapse time for sufficiently long chains. The
exponents given in Ref. �19� for collapse in a hydrodynamic
�1.34±0.03� and Brownian �1.96±0.01� solvent agree with
those presented here.

We may estimate the collapse time in a physical system
using Eq. �15�. The shear viscosity of water at 20 °C is �
�1.0�10−3 kg−1 s−1. We take the size of a monomer to be
��1.6�10−9 m and the magnitude of the van der Waals
interaction to be ��2.0�10−21 m2 kg s−2. Using these val-
ues we predict the collapse time for a typical polymer �N
�104� is �H�10−4 s.

To summarize, we have shown that it is possible to follow
the kinetics of the collapse transition of a polymer in a sol-
vent using a hybrid mesoscale–molecular-dynamics algo-
rithm. Hence it has been possible to show directly that hy-

FIG. 9. A folding pathway for the protein 2ci2.

FIG. 8. A folding pathway for a �-hairpin.
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drodynamic interactions speed up the collapse of the
polymer chain as they enhance cooperative motion of the
monomers. We have also presented a scaling argument de-
scribing the physical process responsible for the collapse ki-
netics. The predicted collapse times in a hydrodynamic ��H

�N4/3� and Brownian heat bath ��B�N2� agree well with the
numerical results ��H�N1.40±0.08 and �B�N1.89±0.09�. The
scaling theory predicts that the collapse time is proportional
to the viscosity of the solvent and it would be of interest to
check this experimentally.

In Sec. VI we examined the effect of hydrodynamics on
the folding kinetics of proteins. We showed that for these
systems, where many free energy minima compete, hydrody-
namics has little effect on the kinetics as no cooperative flow
is set up.
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